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1. Prove that:

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

Using Proof by Induction.

First, prove that for some n, this equation holds true.

n = 212 + 22 =
2(2 + 1)(4 + 1)

6

2 + 4 =
2(3)(5)

6

6 =
30

6
6 = 6

Now, prove that this works for any n+1.

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6

Notice that the n+1 equation contains the n equation.

12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

(n+ 1)(n+ 2)(2n+ 3)

6
n(n+ 1)(2n+ 1) + 6(n+ 1)2 = (n+ 1)(n+ 2)(2n+ 3)

n(2n+ 1) + 6(n+ 1) = (n+ 2)(2n+ 3)

2n2 + n+ 6n+ 6 = 2n2 + 4n+ 3n+ 6

2n2 + 7n+ 6 = 2n2 + 7n+ 6
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therefore

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

2. Prove that

6 | n3 − n

Using Proof by Induction.

First prove that this equation is valid for an arbitrary n.

n = 2

6 | 23 − 2

6 | 6

Now, prove for any n+1

6 | (n+ 1)3 − (n+ 1)

6 | n3 + 3n2 + 3n+ 1− n− 1

6 | n3 + 3n2 + 3n− n

I can pull the original equation out of this one

6 | n3 − n + 3n2 + 3n

Now I need to prove that 3n2 + 3n is divisible by 6

6 | 3n2 + 3n

6 | 3(n2 + n)

2 | n2 + n

Now I need to prove that n2 + n is divisible by 2, or even

Let n be even. By our proof in class today (seen in one form in problem 3), n2 is even
when n is even. An even number added to an even number is even.

Let n be odd. By the same proof, n2 is odd when n is odd. An odd number added to
an odd number is an even number. Therefore, n2 + n is an even number.

Therefore, 6 | (n+ 1)3 − (n+ 1).
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3. Prove that 3
√
2 is an irrational number

Assume that 3
√
2 is a rational number. If so, then

3
√
2 =

a

b
! = 0

where a,b have no common factors

a3 = b
3
√
2

a3 = 2b3

We now know that a3 is even. It would be helpful is a was even.

Let a3 be even, prove that a is even

a3 = 2k

a =
3
√
2k

a =
3
√
2

3
√
k

Blech...lets try again with the contrapositive.

Assume that a is odd, prove a3 is odd.

a = 2k + 1

a3 = 8k3 + 12k2 + 6k + 1

a3 = 2(4k3 + 6k2 + 3k) + 1

a3 is odd, therefore if a3 is even, a is even. Now back.

a3 = 2b3

(2L)3 = 2b3

8L3 = 2b3

4L3 = b3

2(2L3) = b3

By the same proof as above, b must be even because b3 is even. Now, a and b share
the common factor of two, therefore, 3

√
2 is not rational, and therefore irrational.
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4. Given G(V,E), we know that
∑n

1 | di = 2e. Prove

e ≤ n(n− 1)

2

Base case n = 2, a graph with two vertices has 1 edge.

e = 1

e ≤ 2(2− 1)

2
1 ≤ 1

Now prove the n + 1 option. When the n + 1 vertice is added, it can add up to n
edges, one for each of the existing vertices.

e+ n ≤ (n+ 1)n

2

e+ n ≤ n2 + n

2

e+ n ≤ n2 + n+ n− n

2

e+ n ≤ n2 − n

2
+

2n

2

e+ n ≤ n(n− 1)

2
+ n

Therefore, by induction:

e ≤ n(n− 1)

2

5. Show that every graph with two or more nodes contains two nodes that have equal
degrees.

Let us try to prove that every graph with two or more nodes have unique degrees. We
know that the set of possible degrees for a graph with n vertices is:

0, 1, . . . , n− 1

This gives us a total of n unique degrees to assign to our n vertices. We must assign
a degree of zero to one vertex. A vertex with degree zero is connected to no other
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vertices. Let us now assign the degree n− 1 to a vertice. This vertice is connected to
every other vertice in the graph. This is a contradiction, because it is impossible to
simulatenously have a vertice that is connected to every other vertice, and a vertice
that is connected to none. Therefore, there are at least two vertices with the same
degree in any graph with at least 2 vertices.
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